
Package: missSOM (via r-universe)
October 8, 2024

Version 1.0.1

Title Self-Organizing Maps with Built-in Missing Data Imputation

Description The Self-Organizing Maps with Built-in Missing Data
Imputation. Missing values are imputed and regularly updated
during the online Kohonen algorithm. Our method can be used for
data visualisation, clustering or imputation of missing data.
It is an extension of the online algorithm of the 'kohonen'
package. The method is described in the article
``Self-Organizing Maps for Exploration of Partially Observed
Data and Imputation of Missing Values'' by S. Rejeb, C. Duveau,
T. Rebafka (2022) <arXiv:2202.07963>.

License GPL (>= 2)

Depends R (>= 4.0.0)

Imports Rcpp (>= 1.0.7), kpodclustr

LinkingTo Rcpp

NeedsCompilation yes

RoxygenNote 7.1.2

Encoding UTF-8

Author Sara Rejeb [aut, cre], Tabea Rebafka [ctb], Catherine Duveau
[ctb], Ron Wehrens [cph] (Author of included functions from the
'kohonen' package), Johannes Kruisselbrink [cph] (Author of
included functions from the 'kohonen' package)

Maintainer Sara Rejeb <sara.rejeb@live.fr>

Date/Publication 2022-05-05 06:20:06 UTC

Repository https://rejebsara.r-universe.dev

RemoteUrl https://github.com/cran/missSOM

RemoteRef HEAD

RemoteSha 72b81b48927948cf1492a80c290c5c64d29169e6

1

https://arxiv.org/abs/2202.07963

2 imputeSOM

Contents
imputeSOM . 2
map . 4
missSOM . 5
nir . 5
object.distances . 6
plot.missSOM . 7
somgrid . 10
summary.missSOM . 11
tricolor . 12
wines . 13
yeast . 13

Index 15

imputeSOM The Self-Organizing Maps with Built-in Missing Data Imputation.

Description

imputeSOM is an extension of the online algorithm of the ’kohonen’ package where missing data
are imputed during the algorithm. All missing values are first imputed with initial values such as
the mean of the observed variables.

Usage

imputeSOM(
data,
grid = somgrid(),
rlen = 100,
alpha = c(0.05, 0.01),
radius = quantile(nhbrdist, 2/3),
maxNA.fraction = 1,
keep.data = TRUE,
dist.fcts = NULL,
init

)

Arguments

data a matrix or data.frame with continuous variables containing the observations
to be mapped on the grid by the kohonen algorithm, even if there are incomplete.

grid a grid for the codebook vectors: see somgrid.

rlen the number of times the complete data set will be presented to the network.

alpha learning rate, a vector of two numbers indicating the amount of change. Default
is to decline linearly from 0.05 to 0.01 over rlen updates.

imputeSOM 3

radius the radius of the neighbourhood, either given as a single number or a vector
(start, stop). If it is given as a single number the radius will change linearly from
radius to zero; as soon as the neighbourhood gets smaller than one only the
winning unit will be updated. Note that the default before version 3.0 was to
run from radius to -radius. If nothing is supplied, the default is to start with
a value that covers 2/3 of all unit-to-unit distances.

maxNA.fraction the maximal fraction of values that may be NA to prevent the column to be
removed.

keep.data if TRUE, return original data and mapping information. If FALSE, only return
the trained map (in essence the codebook vectors).

dist.fcts distance function to be used for the data. Admissable values currently are
"sumofsquares", "euclidean" and "manhattan. Default is to use "sumofsquares".

init a matrix or data.frame corresponding to the initial values for the codebook
vectors. It should have the same number of variables (columns) as the data. The
number of rows corresponding to the number of units in the map.

Value

An object of class "missSOM" with components

data Data matrix, only returned if keep.data == TRUE.

ximp Imputed data matrix.

unit.classif Winning units for data objects, only returned if keep.data == TRUE.

distances Distances of objects to their corresponding winning unit, only returned if keep.data
== TRUE.

grid The grid, an object of class somgrid.

codes A list of matrices containing codebook vectors.

alpha, radius Input arguments presented to the function.

maxNA.fraction The maximal fraction of values that may be NA to prevent the column to be
removed.

dist.fcts The distance function used for the data.

See Also

somgrid, plot.missSOM, map.missSOM

Examples

data(wines)

Data with no missing values
som.wines <- imputeSOM(scale(wines), grid = somgrid(5, 5, "hexagonal"))
summary(som.wines)
print(dim(som.wines$data))

Data with missing values

4 map

X <- scale(wines)
missing_obs <- sample(1:nrow(wines), 10, replace = FALSE)
X[missing_obs, 1:2] <- NaN
som.wines <- imputeSOM(X, grid = somgrid(5, 5, "hexagonal"))
summary(som.wines)
print(dim(som.wines$ximp))
print(sum(is.na(som.wines$ximp)))

map Map data to a supervised or unsupervised SOM

Description

Map a data onto a trained SOM.

Usage

map(x, ...)

S3 method for class 'missSOM'
map(x, newdata, maxNA.fraction = x$maxNA.fraction, ...)

Arguments

x an object of class missSOM.

... Currently ignored.

newdata a matrix or data.frame, equal to the data argument of the imputeSOM func-
tion.

maxNA.fraction parameters that usually will be taken from the x object, but can be supplied by
the user as well. Note that it is not possible to change distance functions from
the ones used in training the map. See imputeSOM for more information.

Value

A list with elements

unit.classif a vector of units that are closest to the objects in the data.

dists distances of the objects to the closest units. Distance measures are the same ones
used in training the map.

See Also

imputeSOM

missSOM 5

Examples

data(wines)
set.seed(7)

training <- sample(nrow(wines), 150)
Xtraining <- scale(wines[training,])
somnet <- imputeSOM(Xtraining, somgrid(5, 5, "hexagonal"))

map(somnet, scale(wines[-training,],
center=attr(Xtraining, "scaled:center"),
scale=attr(Xtraining, "scaled:scale")))

missSOM missSOM

Description

The Self-Organizing Maps with Built-in Missing Data Imputation. Missing values are imputed
and regularly updated during the online Kohonen algorithm. Our method can be used for data
visualisation, clustering or imputation of missing data. It is an extension of the online algorithm of
the kohonen package.

Details

Self-Organizing Maps with Built-in Missing Data Imputation

Author(s)

you <youremail>

nir Title Near-infrared data with temperature effects

Description

A data object containing near-infrared spectra of ternary mixtures of ethanol, water and iso-propanol,
measured at five different temperatures (30, 40, ..., 70 degrees Centigrade).

Author(s)

My Name <blahblah@roxygen.org>

References

F. Wulfert , W.Th. Kok, A.K. Smilde: Anal. Chem. 1998, 1761-1767

6 object.distances

object.distances Calculate distances between object vectors in a SOM

Description

This function calculates the distance between objects using the distance functions, weights and
other attributes of a trained SOM. This function is used in the calculation of the U matrix in function
plot.missSOM using the type = "dist.neighbours" argument.

Usage

object.distances(kohobj, type = c("data", "ximp", "codes"))

Arguments

kohobj An object of class missSOM.

type Whether to calculate distances between the data objects, or the codebook vec-
tors.

Value

An object of class dist, which can be directly fed into (e.g.) a hierarchical clustering.

See Also

unit.distances, imputeSOM

Examples

data(wines)

Data with no missing values
set.seed(7)
sommap <- imputeSOM(scale(wines), grid = somgrid(6, 4, "hexagonal"))
obj.dists <- object.distances(sommap, type = "data")
code.dists <- object.distances(sommap, type = "codes")

Data with missing values
X <- scale(wines)
X[1:5, 1] <- NaN
sommap <- imputeSOM(X, grid = somgrid(6, 4, "hexagonal"))
obj.dists <- object.distances(sommap, type = "ximp")
code.dists <- object.distances(sommap, type = "codes")

plot.missSOM 7

plot.missSOM Plot missSOM object

Description

Plot objects of class missSOM. Several types of plots are supported.

Usage

S3 method for class 'missSOM'
plot(
x,
type = c("codes", "changes", "counts", "dist.neighbours", "mapping", "property",

"quality"),
classif = NULL,
labels = NULL,
pchs = NULL,
main = NULL,
palette.name = NULL,
ncolors,
bgcol = NULL,
zlim = NULL,
heatkey = TRUE,
property,
codeRendering = NULL,
keepMargins = FALSE,
heatkeywidth = 0.2,
shape = c("round", "straight"),
border = "black",
na.color = "gray",
...

)

add.cluster.boundaries(x, clustering, lwd = 5, ...)

S3 method for class 'missSOM'
identify(x, ...)

Arguments

x missSOM object.

type type of plot. (Wow!)

classif classification object or vector of unit numbers. Only needed if type equals
"mapping" and "counts".

labels labels to plot when type equals "mapping".

pchs symbols to plot when type equals "mapping".

8 plot.missSOM

main title of the plot.

palette.name colors to use as unit background for "codes", "counts", "prediction", "property",
and "quality" plotting types.

ncolors number of colors to use for the unit backgrounds. Default is 20 for continuous
data.

bgcol optional argument to colour the unit backgrounds for the "mapping" and "codes"
plotting type. Defaults to "gray" and "transparent" in both types, respectively.

zlim optional range for color coding of unit backgrounds.

heatkey whether or not to generate a heatkey at the left side of the plot in the "property"
and "counts" plotting types.

property values to use with the "property" plotting type.

codeRendering How to show the codes. Possible choices: "segments", "stars" and "lines".

keepMargins if FALSE (the default), restore the original graphical parameters after plotting the
kohonen map. If TRUE, one retains the map coordinate system so that one can
add symbols to the plot, or map unit numbers using the identify function.

heatkeywidth width of the colour key; the default of 0.2 should work in most cases but in some
cases, e.g. when plotting multiple figures, it may need to be adjusted.

shape kind shape to be drawn: "round" (circle) or "straight". Choosing "straight" pro-
duces a map of squares when the grid is "rectangular", and produces a map of
hexagons when the grid is "hexagonal".

border color of the shape’s border.

na.color background color matching NA - default "gray".

... other graphical parameters.

clustering cluster labels of the map units.

lwd other graphical parameters.

Details

Several different types of plots are supported:

"changes" shows the mean distance to the closest codebook vector during training.

"codes" shows the codebook vectors.

"counts" shows the number of objects mapped to the individual units. Empty units are depicted in
gray.

"dist.neighbours" shows the sum of the distances to all immediate neighbours. This kind of
visualisation is also known as a U-matrix plot. Units near a class boundary can be expected to
have higher average distances to their neighbours.

"mapping" shows where objects are mapped. It needs the "classif" argument, and a "labels" or
"pchs" argument.

"property" properties of each unit can be calculated and shown in colour code. It can be used
to visualise the similarity of one particular object to all units in the map, to show the mean
similarity of all units and the objects mapped to them, etcetera. The parameter property
contains the numerical values. See examples below.

plot.missSOM 9

"quality" shows the mean distance of objects mapped to a unit to the codebook vector of that unit.
The smaller the distances, the better the objects are represented by the codebook vectors.

Function identify.missSOM shows the number of a unit that is clicked on with the mouse. The
tolerance is calculated from the ratio of the plotting region and the user coordinates, so clicking at
any place within a unit should work.

Function add.cluster.boundaries will add to an existing plot of a map thick lines, visualizing
which units would be clustered together. In toroidal maps, boundaries at the edges will only be
shown on the top and right sides to avoid double boundaries.

Value

Several types of plots return useful values (invisibly): the "counts", "dist.neighbours", and
"quality" return vectors corresponding to the information visualized in the plot (unit background
colours and heatkey).

See Also

imputeSOM

Examples

data(wines)
set.seed(7)
SOM.map <- imputeSOM(scale(wines), grid = somgrid(5, 5, "hexagonal"), rlen=100)
plot(SOM.map, type="changes")
counts <- plot(SOM.map, type="counts", shape = "straight")
show both sets of codebook vectors in the map
plot(SOM.map, type="codes", main = c("Codes X"))

oldpar <- par(mfrow = c(1,2))
similarities <- plot(SOM.map, type="quality", palette.name = terrain.colors)
plot(SOM.map, type="mapping",

labels = as.integer(vintages), col = as.integer(vintages),
main = "mapping plot")

par(oldpar)

Show 'component planes'
set.seed(7)
sommap <- imputeSOM(scale(wines), grid = somgrid(6, 4, "hexagonal"))
plot(sommap, type = "property", property = sommap$codes[,1],

main = colnames(sommap$codes)[1])

Show the U matrix
Umat <- plot(sommap, type="dist.neighbours", main = "SOM neighbour distances")
use hierarchical clustering to cluster the codebook vectors
som.hc <- cutree(hclust(object.distances(sommap, "codes")), 5)
add.cluster.boundaries(sommap, som.hc)

and the same for rectangular maps
set.seed(7)
sommap <- imputeSOM(scale(wines),grid = somgrid(6, 4, "rectangular"))

10 somgrid

plot(sommap, type="dist.neighbours", main = "SOM neighbour distances")
use hierarchical clustering to cluster the codebook vectors
som.hc <- cutree(hclust(object.distances(sommap, "codes")), 5)
add.cluster.boundaries(sommap, som.hc)

somgrid SOM-grid related functions

Description

Function somgrid (modified from the version in the class package) sets up a grid of units, of a spec-
ified size and topology. Distances between grid units are calculated by function unit.distances.

Usage

somgrid(
xdim = 8,
ydim = 6,
topo = c("rectangular", "hexagonal"),
neighbourhood.fct = c("bubble", "gaussian"),
toroidal = FALSE

)

unit.distances(grid, toroidal)

Arguments

xdim dimensions of the grid.

ydim dimensions of the grid.

topo choose between a hexagonal or rectangular topology.
neighbourhood.fct

choose between bubble and gaussian neighbourhoods when training a SOM.

toroidal logical, whether the grid is toroidal or not. If not provided to the unit.distances
function, the information in the grid object will be used.

grid an object of class somgrid.

Value

Function somgrid returns an object of class "somgrid", with elements pts, and the input arguments
to the function.

Function unit.distances returns a (symmetrical) matrix containing distances. When grid$n.hood
equals "circular", Euclidean distances are used; for grid$n.hood is "square" maximum distances.
For toroidal maps (joined at the edges) distances are calculated for the shortest path.

summary.missSOM 11

Examples

mygrid <- somgrid(5, 5, "hexagonal")
fakesom <- list(grid = mygrid)
class(fakesom) <- "missSOM"

oldpar <- par(mfrow = c(2,1))
dists <- unit.distances(mygrid)
plot(fakesom, type="property", property = dists[1,],

main="Distances to unit 1", zlim=c(0,6),
palette = rainbow, ncolors = 7)

dists <- unit.distances(mygrid, toroidal=TRUE)
plot(fakesom, type="property", property = dists[1,],

main="Distances to unit 1 (toroidal)", zlim=c(0,6),
palette = rainbow, ncolors = 7)

par(oldpar)

summary.missSOM Summary and print methods for missSOM objects

Description

Summary and print methods for missSOM objects. The print method shows the dimensions and the
topology of the map; if information on the training data is included, the summary method addition-
ally prints information on the size of the data, the distance functions used, and the mean distance of
an object to its closest codebookvector, which is an indication of the quality of the mapping.

Usage

S3 method for class 'missSOM'
summary(object, ...)
S3 method for class 'missSOM'
print(x, ...)

S3 method for class 'missSOM'
print(x, ...)

Arguments

object a missSOM object

... Not used.

x a kohonen object

Value

No return a value.

12 tricolor

See Also

imputeSOM

Examples

data(wines)
som.wines <- imputeSOM(scale(wines), grid = somgrid(5, 5, "hexagonal"))
som.wines
summary(som.wines)

tricolor Provides smooth unit colors for SOMs

Description

Function provides colour values for SOM units in such a way that the colour changes smoothly in
every direction.

Usage

tricolor(grid, phis = c(0, 2 * pi/3, 4 * pi/3), offset = 0)

Arguments

grid An object of class somgrid, such as the grid element in a kohonen object.

phis A vector of three rotation angles. Values for red, green and blue are given by the
y-coordinate of the units after rotation with these three angles, respectively. The
default corresponds to (approximate) red colour of the middle unit in the top row,
and pure green and blue colours in the bottom left and right units, respectively.
In case of a triangular map, the top unit is pure red.

offset Defines the minimal value in the RGB colour definition (default is 0). By sup-
plying a value in the range [0, .9], pastel-like colours are provided.

Value

Returns a matrix with three columns corresponding to red, green and blue. This can be used in the
rgb function to provide colours for the units.

See Also

plot.missSOM

wines 13

Examples

data(wines)
som.wines <- imputeSOM(wines, grid = somgrid(5, 5, "hexagonal"))

colour1 <- tricolor(som.wines$grid)
plot(som.wines, "mapping", bg = rgb(colour1))
colour2 <- tricolor(som.wines$grid, phi = c(pi/6, 0, -pi/6))
plot(som.wines, "mapping", bg = rgb(colour2))
colour3 <- tricolor(som.wines$grid, phi = c(pi/6, 0, -pi/6), offset = .5)
plot(som.wines, "mapping", bg = rgb(colour3))

wines Wine data

Description

A data frame containing 177 rows and thirteen columns; object vintages contains the class labels.

These data are the results of chemical analyses of wines grown in the same region in Italy (Pied-
mont) but derived from three different cultivars: Nebbiolo, Barberas and Grignolino grapes. The
wine from the Nebbiolo grape is called Barolo. The data contain the quantities of several con-
stituents found in each of the three types of wines, as well as some spectroscopic variables.

Author(s)

My Name <blahblah@roxygen.org>

Source

http://kdd.ics.uci.edu

References

M. Forina, C. Armanino, M. Castino and M. Ubigli. Vitis, 25:189-201 (1986)

yeast Title Yeast cell-cycle data

Description

Microarray cell-cycle data for 800 yeast genes, arrested with six different methods, arranged in a
list. Additional class information is present as well.

Author(s)

My Name <blahblah@roxygen.org>

http://kdd.ics.uci.edu

14 yeast

References

P. Spellman et al., Mol. Biol. Cell 9, 3273-3297 (1998)

Index

∗ dataset
nir, 5
wines, 13
yeast, 13

add.cluster.boundaries (plot.missSOM), 7

identify.missSOM (plot.missSOM), 7
imputeSOM, 2, 4, 6, 9, 12

map, 4
map.missSOM, 3
missSOM, 5

nir, 5

object.distances, 6

plot.missSOM, 3, 7, 12
print.missSOM (summary.missSOM), 11

somgrid, 10
summary.missSOM, 11

tricolor, 12

unit.distances, 6
unit.distances (somgrid), 10

vintages (wines), 13

wines, 13

yeast, 13

15

	imputeSOM
	map
	missSOM
	nir
	object.distances
	plot.missSOM
	somgrid
	summary.missSOM
	tricolor
	wines
	yeast
	Index

